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Abstract

Recent progresses in model-free single object tracking

(SOT) algorithms have largely inspired applying SOT to
multi-object tracking (MOT) to improve the robustness as
well as relieving dependency on external detector. However,
SOT algorithms are generally designed for distinguishing a
target from its environment, and hence meet problems when
a target is spatially mixed with similar objects as observed
frequently in MOT. To address this issue, in this paper we
propose an instance-aware tracker to integrate SOT tech-
niques for MOT by encoding awareness both within and be-
tween target models. In particular, we construct each tar-
get model by fusing information for distinguishing target
both from background and other instances (tracking tar-
gets). To conserve uniqueness of all target models, our
instance-aware tracker considers response maps from all
target models and assigns spatial locations exclusively to
optimize the overall accuracy. Another contribution we
make is a dynamic model refreshing strategy learned by a
convolutional neural network. This strategy helps to elim-
inate initialization noise as well as to adapt to the varia-
tion of target size and appearance. To show the effective-
ness of the proposed approach, it is evaluated on the pop-
ular MOT15 and MOT16 challenge benchmarks. On both
benchmarks, our approach achieves the best overall perfor-
mances in comparison with published results.

1. Introduction

Tracking multiple objects in video is critical for many

applications, ranging from vision-based surveillance to au-

tonomous driving. A popular solution to Multiple Object

Tracking (MOT) is the tracking-by-detection strategy, in

which, detections from an external detector on each frame

are associated and connected to form target trajectories in

either online or offline batch mode. With recent progress on

object detector, tracking-by-detection has been successful

in multiple domains [1, 3, 7, 21, 28, 30, 31, 40, 45, 47]. How-

ever, separation of detection from tracking keeps detector

inaccessible to the frame-to-frame correlation information

which identifies the difference between object detection in

still images and in videos. Moreover, the dependence on de-

tection becomes a major limitation in complex scenes due to

the degraded detection reliability caused by large size vari-

ation and partial occlusion of targets.

MOT, on the other hand, can be viewed as a general-

ized Single Object Tracking (SOT) problem where target

locations are estimated from multiple SOT tracking mod-

els. Significant improvement has been achieved in recent

SOT approaches which are efficient and robust in complex

scenes [5,15,16,18,33]. However, even with a proper target

management mechanism, directly applying multiple SOT

trackers simultaneously to track multiple targets still expe-

riences various difficulties.

A SOT tracker usually allows certain generalisability to

capture appearance changes of target. In the MOT context,

however, multiple similar targets may appear in the search-

ing area of a SOT tracker. Such targets from the same cat-

egory (e.g., pedestrian) often share similar appearance or

shape that may confuse traditional SOT trackers. When this

happens, SOT trackers for multiple targets may easily drift

and even end up tracking the same target. Moreover, since

SOT trackers depend heavily on the model learned at the

first frame, steady tracking of a model-free SOT tracker re-

quires groundtruth bounding box of target at the first frame

to correctly distinguish the target from its background. In

the current MOT framework, all target candidates are pro-

vided by a real detector which usually yields considerable

noise in both target location and scale.

In this work, we propose using instance-aware (IA)

tracker to both harvest the merit of SOT techniques and ad-

dress the above issues in MOT. In addition to distinguish-

ing a target from background as ordinary SOT tracker, our

IA tracker tracks with the awareness of all other instances

and their tracking models, which often means different tar-

gets of the same category. We implement such awareness

in both target and global level. In scope of each target,

we formulate the IA tracker in the efficient kernel correla-

161

2019 IEEE Winter Conference on Applications of Computer Vision

978-1-7281-1975-5/19/$31.00 ©2019 IEEE
DOI 10.1109/WACV.2019.00023



Detection 
Response

Re-tracking 
with Backup 

Model 

Occlusion 
Recovery

Target 
Exit

Tracked Targets 
in Frame t

Model 
Refresh

Verification 
with 

Detections

New 
Target

Out of 
View

Legend
Verification Success            Tracking Related
Verification Fail                    Detection Related

Detection 
in Frame t

Image 
Frame t

Evaluate with 
Target Models 

Predict with 
Target Models

Prediction 
Response

Instance-Aware Tracker

Figure 1. Overview of our instance-aware tracker based tracking system.

tion filter framework, while fusing features that tell a target

from both background and other instances. This way, an IA

target model is entitled with the awareness of differences

between instances thus enhances response to its own tar-

get while suppressing responses to other similar targets. In

global scope, generated response maps for all target mod-

els are used integrally to predict the target locations for a

new coming frame. Awareness between targets models is

treated as an optimization problem to maximize the overall

response that each target is tracked exclusively by only one

target model. A detection verification mechanism is pro-

posed to solve the global optimization problem efficiently

by incorporating detections from detectors and predictions

from target models. And instead of updating model grad-

ually, identity of a target model in proposed method is re-

inforced through a model refreshing mechanism, which is

adaptively learned via a convolutional neural network.

Our contributions are mainly two-fold:

• We propose a novel instance-aware tracker to effec-

tively integrate SOT in MOT. By being instance-aware

inherently and mutually, target models significantly

improve their capability to solve the ambiguity of sim-

ilar targets in neighborhood.

• We propose an adaptive model refreshment strategy to

further improve the reliability of SOT in MOT context.

To show the effectiveness of the proposed approach, it is

evaluated on the popular MOT15 and MOT16 challenge

benchmarks. On both benchmarks, our approach achieves

the best overall performances in comparison with published

results.

2. Related Work
Recent works on MOT primarily focuses on the tracking-

by-detection principle. Most of these methods can be

roughly categorized into two groups. The first group treat

MOT as an offline global optimization problem that uses

frame observation from both previous and future to estimate

the current status of targets [2, 26, 35, 36, 41]. These meth-

ods usually focus on data association based methods such

as Hungarian algorithm [6, 20], network flow [52, 53] and

multiple hypotheses tracking [11, 25]. Their performance

heavily depends on the quality of detections from external

detector. Different from these methods, our approach learns

tracking model for each target to search and predict loca-

tions of next frame online. Detections in our approach are

only used for model uniqueness verification and model re-

freshing.

The second group only needs observations till to the cur-

rent frame to online estimate target status [10,14,43,48–51].

In [48], MOT is formulated as a Markov decision process

with a policy estimated on the labeled training data. [43] ex-

tends the work [48] to use deep CNN and LSTM to encode

long-term temporal dependencies by fusing clues from mo-

tion, interaction and person re-identification model. Chu,

et al. [10] use a dynamic CNN-based framework with a

learned spatial-temporal attention map to handle occlusion,

where CNN trained on ImageNet is used for pedestrian fea-

ture extraction. Yan et al. [49] gather target candidates from

both detector and independent SOT trackers and select the

optimal candidates through an ensemble model. Our ap-

proach differs from these methods by adding awareness be-

tween SOT trackers and dynamically refreshing model to

eliminate possible noise in model initialization.

3. System Overview

For the t-th frame, our tracking system takes image

frame and detections from an external detector as input, as

shown in Fig. 1. Target models of instance-aware tracker are

used to predict target locations independently and estimate

scores for each detection. A detection verification process is

applied to assign each spatial candidate exclusively to only

one tracked target and verify the uniqueness of their target

model as detailed in Sec. 4.2 and Sec. 4.3. Model of veri-

fied target will be refreshed if assigned detection enclosing
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target better than its model prediction. Unverified targets

and detections will be matched again using backup models

to recover from incorrect refreshment. These components

are explained in Sec. 4.4. Further, unpaired predictions and

detections are passed into occlusion handling. Final unver-

ified targets will exit when they have not been verified for

some continuous frames. Unpaired detections will be added

as new targets as described in Sec. 4.5.

4. Methodology
4.1. Problem Formulation

Following the tracking-by-detection paradigm, online

MOT can be formulated as an optimization problem, at

frame t, the set of N t target locations X̂t =
{
x̂t
i

}Nt

i=1
in current image It are chosen from M t candidates in set

Ot =
{
xt
j

}Mt

j=1
to maximize a score:

X̂t = argmax
Xt⊂Ot

f(It,Xt;at,W t−1). (1)

s.t.
∑
i

atij ≤ 1, atij ∈ {0, 1}. (2)

The parameter at =
{
atij ∈ {0, 1}

}
indicates the associa-

tion between the i-th tracked targets in X̂t−1 at frame t− 1
and the j-th candidate location in Xt at frame t. atij = 1

if x̂t−1
i is associated with xt

j , and atij = 0 otherwise. Each

candidate can only be assigned to at most one tracked target.

W t =
{
wt

i

}Nt

i=1
is the set of parameters to model each tar-

get, which is usually learned through a training procedure

using the appearance or location information of target.

The objective function f(·) measures the overall quality

of the tracking results for all targets at frame t, defined as

below

f(It,Xt) =
∑
ij

atijgi(I
t, xt

j ;w
t−1
i ). (3)

The set of functions gi(.) can be interpreted as the objective

function for tracking single target such that gi(I
t, xt

j ;w
t−1
i )

assigns a score to the j-th candidate location xt
j on It ac-

cording to the i-th model parameter wt−1
i ∈ W t−1. The

model parameters should be determined by previous images

and target locations up to frame t− 1 .

Solving the online MOT problem, therefore, is to solve

at and gi(.) for each frame.

4.2. Instance-Aware Tracker

We propose to use Instance-Aware (IA) tracker to solve

at and gi(.) in two levels. For each single target, objective

function gi(I
t, xt

j) is learned to only assign a high score to

its own target while returns low scores for both background

and other instances. As for global, at is solved to associate
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Figure 2. Illustration of target level instance-awareness: discrim-

inate targets from background and discriminate different targets.

zdet and zid are feature maps visualized by accumulating values

in all channels.

each spatial location xt
j on It exclusively to only one target

referring those scores from all targets.

We start from the objective function gi(I
t, xt

j). Ordinary

SOT methods focus on distinguishing target from back-

ground and allow certain variations to handle appearance

change of target, which makes tracker insensitive to dis-

tracters that are apparently similar to target. Thus, directly

adopting SOT methods for MOT causes the trackers easily

drifting to wrong targets. In this work, we treat the prob-

lem of tracking single target in MOT context as two sub-

problems: i) to distinguish targets from background; and

ii) to model the difference between targets. The objective

function can be rewritten as

gi(I
t, xt

j) = gdet(I
t, xt

j ;θ
t−1
i ) + gid(I

t, xt
j ; ε

t−1
i ), (4)

where θt−1
i and εt−1

i are the two model parameters for

the i-th target focusing on each of the problems mentioned

above, therefore gdet(I
t, xt

j ;θ
t−1
i ) estimates the score for

location xt
j containing one of the targets using model pa-

rameter θt−1
i , gid(I

t, xt
j ; ε

t−1
i ) evaluates the similarity for

object at xt
j referring to the i-th target using model εt−1

i .

Benefit of the separation is that for some target categories

each of the sub-problems already has well-founded meth-

ods and datasets for model learning. For example, in the

case of tracking multiple pedestrian, the first sub-problem

is pedestrian detection and the second one is person re-

identification, and both have large scale datasets such as

MSCOCO, CUHK [32].

We focus on the Ridge Regression form of gdet(.) and

gid(.), in which, the functions share the form of g(z;Φ) =
ΦzT with z for regression input and Φ for learnable param-

eter. Then the objective function in Eq. 4 can be rewritten

as

gi(I
t, xt

j) = θt−1
i Tdet(I

t, xt
j)

T + εt−1
i Tid(I

t, xt
j)

T

= wt−1
i

[
Tdet(I

t, xt
j),Tid(I

t, xt
j)
]T (5)

where Tdet(., x
t
j) and Tid(., x

t
j) are image transformations

centering at xt
j , [.] is channel-wise concatenation, wt−1

i is
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Figure 3. Tracking multiple objects by instance-aware tracker with model refreshment.

the combined model parameter for the i-th target. An illus-

tration is shown in Fig. 2.

Solving wt
i online usually involves carefully designed

strategies for positive and negative sample collection. Ker-

nel Correlation Filter (KCF) tracker proposed in [18] solve

this problem efficiently in Fourier domain by combining

circulant matrices and kernel trick. Following this formula-

tion, model parameter of the i-th target at frame t is obtained

by w̃t
i = ỹ

k̃ztzt+λ
, where zt =

[
Tdet(I

t),Tid(I
t)
]

is the

feature map, kztzt

is defined as kernel correlation in [18],

ỹ = F(y) is Discrete Fourier Transform (DFT) of regres-

sion labels. If considering a SOT context where only one

target presents, an predicted location Px̂t
i using the i-th tar-

get model then can be estimated as

Px̂t
i = argmax

xt
j∈Ot

F−1(k̃zt−1zt � w̃t−1
i ). (6)

Now we apply the objective function of tracking a single

target to MOT context by combining Eq. 3 and Eq. 6. Given

the set of
{
xt
j

}
, the objective function of IA tracker subject

to constrain in Eq. 2 is defined as

f(It,Xt) = max
aij

∑
ij

atijF−1(k̃zt−1zt � w̃t−1
i )

∣∣
=xt

j

(7)

The core idea of IA tracker can be explained as follow.

In SOT version of KCF tracker, prediction is the spatial

location strongest responding on response map given by

F−1(k̃zt−1zt�w̃t−1
i ). While in MOT, each spatial location

has multiple responses generated by different target models

of frame t − 1 as shown in Fig. 3. And to further confirm

each target is tracked exclusively by only one target model,

we make use of the spatial exclusive assumption that no two

or more targets can occupy the same position on image at

the same time (on image frame only, not considering real 3D

space). Thus, a global optimization in Eq. 7 is employed to

maximize the overall response subject to the spatial exclu-

sive constrain defined in Eq. 2 that each spatial location on

image belongs to at most one target. Notice that, in calcu-

lation, zt usually covers the search area of a target model

only, where it should be written as zti and the actual coordi-

nate of xt
j in zti should also be converted accordingly.

4.3. Detection Verification

Solving the optimization problem in Eq. 7 for all spa-

tial locations on image frame, e.g. each pixel, is compu-

tationally impractical. Ideally, a subset whose elements

are complete and spatial exclusive is preferred. Prediction
Pxt

j ∈ P t from Eq. 6 contains all possible locations for all

targets, but these locations may have potential spatial con-

flicts. Detections Dxt
j ∈ Dt from a category detector are

spatial exclusive but not complete due to the possible false

negative. We use the combination of detection Dxt
j ∈ Dt

and predictions Pxt
j ∈ Pt as the candidate locations set

Ot = Dt ∪ P t. Result candidate set is complete but only

partially spatial exclusive. Therefore, we propose a detec-

tion verification mechanism to solve at for all targets lever-

aging the limited spatial exclusive information provided by

Dt.

If a graph G(V ,E) is created on V = X̂t−1 ∪Ot and

E which are the edges between vertexes in V , the opti-

mization problem in Eq. 7 with constrain in Eq. 2 can be

reformed as a graph multicut problem minimizing cost:

min
ce∈{0,1}

∑
e∈E

cede (8)
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s.t. ∀Puv ∈ P ∀e ∈ Puv : ce ≤
∑

e′∈Pe/{e}
ce′ , (9)

where u, v ∈ V , ce is the binary label indicating if e ∈ E
is a cutting edge, de is the cost/reward associated to edge e,

Puv is the set of path from u to v, e is the edge between u
and v. Solving Eq. 8 and Eq. 9 in the context of MOT is to

find the subgraphs, in which, candidate locations belonging

to the same target are connected while belonging to differ-

ent targets are separated by cutting edges as shown in Fig.

3.

After optimization, each Dxt
j is assigned to one of the

tracked target x̂t−1
i ∈ X̂t−1. Verification of each target

tracked exclusively by only one tracking models can be

done by checking whether a tracked target assigned with

detections. Due to the possible false negative and false pos-

itive generated by a real detector, verification can only be

conducted every TV frames to confirm the uniqueness of

target model in long-term. Particular, if a tracked target

has not been assigned with any detection for continuous

TV frames, then its target model is likely tracking either a

false positive target or a target shared with other models. In-

creasing TV , therefore, decreases awareness between target

models since it allows each target model to track indepen-

dently for more frames. TV also controls the dependency

on external detection and can be adjusted to adapt different

detection qualities. Detailed parameter choice and discuss

for TV are described in Sec. 5.2.

We employ a primal heuristic based approach proposed

in [22] for solving Eq. 8 with Eq. 9, where a set of trans-

formation sequences are used to update the bi-partitions of

a subgraph. Specifically, cost of each edge in Eq. 8 is cal-

culated as:

de
.
= duv =

⎧⎪⎨
⎪⎩
gi(I

t, xt
j), if u ∈ X̂t−1, v ∈ Ot

IoU(btj , b
t
j′), if u ∈ Ot, v ∈ Ot

−C, if u ∈ X̂t−1, v ∈ X̂t−1

(10)

where IoU(.) calculates the bounding box overlap ratio in

term of Intersection over Union, btj is the bounding box as-

sociated with xt
j , and C is large positive constant to ensure

cutting between different tracked targets. The final equiva-

lence between aij and ce is defined as following

aij =

{
c̄e = c̄uv, if u ∈ X̂t−1, v ∈ Ot

0, otherwise
(11)

where c̄e stands for the logical negation.

4.4. Model Refresh

We train a CNN based classifier to determine whether

to refresh the tracking model of a target using its assigned

detection. Target model in ordinary SOT methods is initial-

ized by target groundtruth in the first frame and is slowly

and constantly updated. While in MOT, models are initially

learned from detections which contain considerable noise

in location and scale. And when targets moving close to the

camera, their scale also will change rapidly. Due to those

reasons, models in MOT have to be refreshed frequently.

Specifically, feature maps centering at tracked target Px̂t
i

and its assigned detection Dxt
j are extracted and stacked

channel-wise to feed into a CNN based classifier. The CNN

is to make comparison between the bounding boxes associ-

ated with Px̂t
i and Dxt

j on target enclosing. If the bounding

box of Dxt
i encloses target better, wt

i will be refreshed by

re-calculating wt
i using Dxt

i. In tracking phase, we reuse

features from Tdet(I
t) and adopt ROI Pooing to exact fea-

ture maps at specific locations, as show in Fig. 3

We adopt reinforcement learning to train the CNN clas-

sifier for the model refreshing policy. We update the clas-

sifier or the policy only when it makes a mistake. Suppose

the tracker is tracking the i-th target in t-th frame. There are

two types of mistake that can happen. i) Bounding box of
Dxt

i encloses target better than Px̂t
i referring to groundtruth

bounding box, but classifier chooses not to refresh wt
i . Then

features at Dxt
i and Px̂t

i are concatenated and added to train-

ing set as positive samples. ii) Bounding box of Px̂t
i en-

closes target better than Dxt
i, but classifier chooses to re-

fresh wt
i . Concatenated features in those cases are added as

negative samples. Each time the classifier makes a mistake,

the CNN is trained through a constant number of iterations

using online batches of size BN , which contains the newly

added sample and BN − 1 samples randomly sampled from

the rest training set. We keep updating the policy until all

the targets in training set are successfully tracked.

In case of classifier making mistake at real tracking

phase, we adopt a model backup mechanism. In frame t,
if classifier chooses to refresh wt−1

i with a new wt
i , w

t−1
i

will be saved. In frame t + 1, if tracker with wt
i cannot be

assigned with a Dxt+1
j , the old model wt−1

i will be restored

for tracking and verification one more time.

4.5. Target Management

In this work, except for ‘Tracked’ event, we also handle

the ‘Occlusion’, ‘Enter’ and ‘Exit’ events of targets.

Occlusion To recovery a target from occlusion, we train an

SVM classifier to estimate if two locations x̂t′
i and Dxt

j are

containing the same target. We make a simple assumption

that a detection Dxt
j not assigned to any tracked target in

detection verification and re-tracking phase is either a new

target or an existing target just finished occlusion. Occlu-

sion recovery thus is to connect that detection with tracked

target not assigned with detection. Suppose i-th target starts

to be occluded in frame t′ and finishes occlusion in frame

t, where t − t′ > 1, b1 = (ξ1, ζ1, ω1, η1) is the bound-

ing box associated with the first location specified by its

x-coordinate, y-coordinate, width and height respectively,
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Table 1. Tracking Performance on the MOT training set.

Venice-2

TV 0 1 2 3 4 5 6 7 8 10 20

MOTA 27.0 30.9 32.7 33.7 34.4 32.4 33.1 33.4 33.1 34.1 31.5

FP 647 708 773 795 824 864 889 922 942 961 1237

FN 4498 4173 3991 3898 3825 3931 3856 3801 3801 3714 3622

MOT16-05

TV 0 1 2 3 4 5 6 7 8 10 20

MOTA 39.5 40.3 40.9 41.1 41.2 42.3 42.3 42.2 40.9 40.0 37.8

FP 187 231 255 281 312 324 340 355 415 492 693

FN 3522 3441 3387 3349 3314 3240 3228 3216 3241 3222 3152

Table 2. Tracking Performance on the MOT training set

Method MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓
IA 26.1 69.3 15.4% 26.9% 991 4250 39 42

IA+MR 33.3 74.0 15.4% 34.6% 785 3939 36 53

IA−DV+MR -35.3 72.7 38.5% 19.3% 6734 2856 70 108

IA−TA+MR 32.2 73.7 15.4% 38.5% 760 4039 43 53

Full 34.4 74.1 15.4% 30.8% 824 3825 36 66

and b2 is for the second location. We can calculate the fol-

lowing feature for estimation,

[
t− t′,

ξ2 − ξ1
η̄

,
ζ2 − ζ1

η̄
,
η2 − η1

η̄
, IoU(b2,b1), φhist

]
,

where η̄ = η1+η2

2 and φhist is histogram intersection of the

two image patches bounded by b1 and b2. In the tracking

phase, for those Dxt
j not assigned to any x̂t−1

i and those x̂t′
i

not being assigned with any Dxt
j , the SVM classifier is used

to estimate the matching possibility of each pair. Hungarian

algorithm is employed to find the final matching pair.

Target Enter As mentioned above, if Dxt
j hasn’t been as-

signed in any of the previous stages, Dxt
j is added to X̂t as

a new target.

Target Exit We adopt two criteria for target exit checking:

i) Bounding box of x̂t
i is out of view. ii) Target hasn’t been

assigned a detection for continuous TV frames.

5. Experiments

We conduct three experiments on the popular MOT15

[29] and MOT16 [37] benchmarks to analyze our proposed

approach and compare to prior works. The test set of

MOT15 contains 11 sequences and MOT16 contains 7 se-

quences, where camera motion, camera angle, and imaging

condition vary greatly. For each test sequence, a training

sequence is provided which is captured in the similar set-

tings. For both training and test set, detections from a real

detector are provided.

5.1. Experiment Setting

The proposed approach is implemented in MAT-

LAB with Caffe and running on a desktop with 4

cores@3.60GHz CPU and a GTX1080 GPU. We use

PAFNet proposed in [8] for Tdet(.). PAFNet generates two

feature maps at the end, where different human body parts

and corresponding affinity field are highly responded. Two

feature maps are concatenated along channel to form the

output of Tdet(.). We use Tdet(.) to distinguish pedestrian

from their background. PartNet proposed in [54] is adopt

for Tid(.). PartNet generate L2 normalized feature for per-

son Re-Identification task, which is suitable for Tid(.) to

distinguish different pedestrians. Original PartNet outputs

a feature vector for each input image. We remove its last

global pooling layer and convert the last fully connected

(FC) layer to convolutional layer to output feature map in

reasonable dimensions.

For each test sequence in MOT15 and MOT16 dataset,

one or more similar sequences in training set are used to

train a CNN classifier mentioned in Sec. 4.4 and a SVM

classifier in Sec. 4.5. We adopt the partition method men-

tioned in [48]. CNN classifier is consisted of one convo-

lutional layer and one FC layer. When training the CNN

classifier, BN = 32 and 5 iterations with constant learning

rate of 0.001 are used when CNN classifier makes mistake.

By implementing IA tracker and model refreshment with

shared feature extraction as shown in Fig. 3, the average

speed of proposed approach on MOT15 dataset is about 0.3

fps and 0.1 fps on MOT16 dataset. The average target den-

sities on each frame of those two datasets are 10.6 and 30.8

for the test set. Proposed method achieves acceptable speed
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Table 3. Tracking Performance on the MOT15 benchmark test set. Best in bold.

Mode Method MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓

O
ffl

in
e

TBD [17] 15.9 70.9 6.4% 47.9% 14943 34777 1939 1963

CEM [39] 19.3 70.7 8.5% 46.5% 14180 34591 813 1023

JPDA m [42] 23.8 68.2 5.0% 58.1% 4533 41873 404 792
SiameseCNN [27] 29.0 71.2 8.5% 48.4% 5160 37798 639 1316

MHT DAM [25] 32.4 71.8 16.0% 43.8% 9064 32060 435 826

JMC [23] 35.6 71.9 23.2% 39.3% 10580 28508 457 969

O
nl

in
e

RNN [38] 19.0 71.0 5.5% 45.6% 11578 36706 1490 2081

oICF [24] 27.1 70.0 6.4% 48.7% 7594 36757 454 1660

SCEA [19] 29.1 71.1 8.9% 47.3% 6060 36912 604 1182
MDP [48] 30.3 71.3 13.0% 38.4% 9717 32422 680 1500

AP [34] 38.5 72.6 8.7 % 37.4% 4005 33203 586 1263

proposed 38.9 70.6 16.6% 31.5% 7321 29501 720 1440

Table 4. Tracking Performance on the MOT16 benchmark test set. Best in bold.

Mode Method MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Frag↓

O
ffl

in
e

SMOT [13] 29.7 75.2 5.3% 47.7% 17426 107552 3108 4483

CEM [39] 33.2 75.8 7.8% 54.4% 6837 114322 642 731

GMMCP [12] 38.1 75.8 8.6% 50.9% 6607 105315 937 1669

MHT DAM [25] 45.8 76.3 16.2% 43.2% 6412 91758 590 781

NOMT [9] 46.4 76.6 18.3% 41.4% 9753 87565 359 504
LMP [46] 48.8 79.0 18.2% 40.1% 6654 86245 481 595

O
nl

in
e

OVBT [2] 38.4 75.4 7.5% 47.3% 11517 99463 1321 2140

EAMTT [44] 38.8 75.1 7.9% 49.1% 8114 102452 965 1657

oICF [24] 43.2 74.3 11.3% 48.5% 6651 96515 381 1404

AMIR [43] 47.2 75.8 14.0% 41.6% 2681 92856 774 1675

proposed 48.8 75.7 15.8% 38.1% 5875 86567 906 1116

performance compared with other methods such as LMP

(offline) [46] at 0.6 fps and AMIR (online) [43] at 1.0 fps.

Evaluation Metric To evaluate the performance of pro-

posed method, we employ the widely accepted CLEAR

MOT metrics [4], including multiple object tracking pre-

cision (MOTP) and multiple object tracking accuracy

(MOTA) which is a cumulative measure that combines

false positives (FP), false negatives (FN) and the identity

switches (IDS). Additionally, we also report the percentage

of mostly tracked targets (MT), the percentage of mostly

lost targets (ML), and the number of times a trajectory is

fragmented (Frag).

5.2. Determine TV

Hyper-parameter TV in proposed approach is used to

determine the maximum continuous frames that a target

can be tracked without the verification from external de-

tection. Setting of TV controls the strength of awareness

between target models: As TV increasing, verification be-

comes less frequent, each target model tracks its target more

independently, which is more equivalent with directly ap-

plying multiple SOT tracker for MOT; When decreasing

TV , proposed approach depends more on external detection

and behaviors more like traditional tracking-by-detection

approaches. As reflected in evaluation metrics, choice of

TV controls the trade off between FP and FN. Higher TV

allows tracker to continue more frames without the confir-

mation from detection, thus may introduce more FP. Lower

TV requires frequent verification between tracker and de-

tection, where tracking performance will heavily depend on

detection quality, thus tracker may generate more FN when

detection quality gets worse.

We test various of TV on the training dataset of MOT

benchmark. The results of MOTA, FP and FN for Venice-

2 from MOT15 and MOT16-05 from MOT16 are reported

in Tab. 1. In both sequences, starting at TV = 0 where

verification for every frame is required and increasing TV ,

MOTA first increases then decreases due to the increasing

FP in results. FP and FN gain their balance at TV = 4
for Venice-2 and TV = 5 for MOT16-05 where MOTA

achieves best. We choose TV = 4 for the rest of our ex-

periments.

5.3. Ablation Study

We justify the effectiveness of each building block in

proposed method through ablation study as shown in Tab. 2.
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Figure 4. Visualization of selected sequences. The first row is from MOT15 test set, the second row is from MOT16 test set. Trajectories

are fitted for better view.

IA stands for the proposed instance-aware tracker. MR is

the dynamic model refreshing. IA−DV disables detection

verification in IA tracker by setting TV → ∞, which re-

moves the awareness between target models thus is equiva-

lent with applying multiple independent SOT trackers for

MOT. IA−TA disables target level awareness by replac-

ing the fusion features with general deep features extracted

from VGG-16 trained on ImageNet. Full method also in-

cludes the re-tracking and occlusion handle part.

Analysis is performed on Venice-2 sequence from train-

ing set of MOT15. Numerical results of all CLEAR MOT

metrics are listed in Tab. 2. Having demonstrated the im-

portance of awareness between target models in Sec. 5.2,

totally disabling detection verification results in the great-

est performance degradation. Model refreshment is also es-

sential for improving performance and robust tracking. As

shown by MOTA and MOTP, with model refreshment, not

only tracking accuracy but also the bounding box precision

improves a lot. In Full method, re-tracking and occlusion

handle mechanism use simple linear interpolation to esti-

mate the missing locations between the previous tracked

target and current detection, which may introduce FP, but

reduces more FN as shown in Tab. 2 thus still improves the

overall performance.

5.4. Results on Test Sequences

We test our proposed approach on both MOT15 and

MOT16 test sequences. In order to boost performance,

we adopt several pre- and post- processing techniques, in-

cluding excluding detections with extreme size according to

scene prior and applying fitting to result trajectories in se-

quences where no rapid pedestrian scale changes. The per-

formance is shown in Tab. 3 and Tab. 4. We compared our

method with the best peer-reviewed and published results

on the benchmark, including JMC [23], AP [34], LMP [46]

and AMIR [43].

The biggest challenge in MOT15 and MOT16 datasets is

the enormous FN over FP (more than 10 times in MOT16)

as shown in Tab. 3 and Tab. 4, which is partially introduced

by FN in public detection. Benefited from the built-in SOT

techniques, proposed method results in the least number of

FN and the best MT/ML performance compared with all

other online methods. As for overall performance, we es-

tablished a new state-of-the-art among all online and offline

methods in both MOT15 and MOT16 benchmark in terms

of MOTA which is the most important metric for MOT. Vi-

sualization of selected sequences is shown in Fig. 4. The

complete metrics and visualization can be found on the

benchmark website.1

6. Conclusion
In this paper we proposed using instance-aware with

SOT technique to improve multiple object tracking (MOT).

By built-in instance-awareness both in each target model

and between all target models, our proposed approach can

better predict the location of each target online, and mean-

while conserves the uniqueness of each tracking model to

prevent the generation of duplicated and false positive tra-

jectory. Tracking models in our approach are refreshed dy-

namically with a learned convolutional neural network to

inhibit the noise of using inaccurate detections and to adapt

appearance and scale variation of targets over time. Exper-

iments on the MOT15 and MOT16 challenge datasets show

the effectiveness of proposed approach in comparison with

state-of-the-art.

Acknowledgement. This work is supported in part by US

NSF Grants 1407156, 1618398 and 1814745.

1https://motchallenge.net/results/2D_MOT_2015/
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